A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome.

نویسندگان

  • I Tubulekas
  • D Hughes
چکیده

Elongation factor Tu (EF-Tu).GTP has the primary function of promoting the efficient and correct interaction of aminoacyl-tRNA with the ribosome. Very little is known about the elements in EF-Tu involved in this interaction. We describe a mutant form of EF-Tu, isolated in Salmonella typhimurium, that causes a severe defect in the interaction of the ternary complex with the ribosome. The mutation causes the substitution of Val for Gly-280 in domain II of EF-Tu. The in vivo growth and translation phenotypes of strains harboring this mutation are indistinguishable from those of strains in which the same tuf gene is insertionally inactivated. Viable cells are not obtained when the other tuf gene is inactivated, showing that the mutant EF-Tu alone cannot support cell growth. We have confirmed, by partial protein sequencing, that the mutant EF-Tu is present in the cells. In vitro analysis of the natural mixture of wild-type and mutant EF-Tu allows us to identify the major defect of this mutant. Our data shows that the EF-Tu is homogeneous and competent with respect to guanine nucleotide binding and exchange, stimulation of nucleotide exchange by EF-Ts, and ternary complex formation with aminoacyl-tRNA. However various measures of translational efficiency show a significant reduction, which is associated with a defective interaction between the ribosome and the mutant EF-Tu.GTP.aminoacyl-tRNA complex. In addition, the antibiotic kirromycin, which blocks translation by binding EF-Tu on the ribosome, fails to do so with this mutant EF-Tu, although it does form a complex with EF-Tu. Our results suggest that this region of domain II in EF-Tu has an important function and influences the binding of the ternary complex to the codon-programmed ribosome during protein synthesis. Models involving either a direct or an indirect effect of the mutation are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A signal relay between ribosomal protein S12 and elongation factor EF-Tu during decoding of mRNA.

Codon recognition by aminoacyl-tRNA on the ribosome triggers a process leading to GTP hydrolysis by elongation factor Tu (EF-Tu) and release of aminoacyl-tRNA into the A site of the ribosome. The nature of this signal is largely unknown. Here, we present genetic evidence that a specific set of direct interactions between ribosomal protein S12 and aminoacyl-tRNA, together with contacts between S...

متن کامل

Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts.

Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differ...

متن کامل

Simultaneous Binding of Multiple EF-Tu Copies to Translating Ribosomes in Live Escherichia coli

In bacteria, elongation factor Tu is a translational cofactor that forms ternary complexes with aminoacyl-tRNA (aa-tRNA) and GTP. Binding of a ternary complex to one of four flexible L7/L12 units on the ribosome tethers a charged tRNA in close proximity to the ribosomal A site. Two sequential tests for a match between the aa-tRNA anticodon and the current mRNA codon then follow. Because one elo...

متن کامل

Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome.

Elongation factor Tu (EF-Tu) promotes binding of aminoacyl-tRNA to the A site of the ribosome. Here, we report the effects of mutations in helix D of EF-Tu and in the C-terminal domain of L7/12 on the kinetics of A-site binding. Reaction rates were measured by stopped-flow and quench-flow techniques. The rates of A-site binding were decreased by mutations at positions 144, 145, 148, and 152 in ...

متن کامل

Dynamic properties of the EF-Tu-GTP-aminoacyl-tRNA ternary complex

Background: Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the Gprotein Elongation Factor Tu (EF-Tu) and GTP. Results: EF-Tu-GTP-aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor Elongation Factor-Ts (EF-Ts). Conclusion: EF-Ts directly facilitates the formation and disassociation of ternary complex. Signif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 175 1  شماره 

صفحات  -

تاریخ انتشار 1993